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Very large scale tests (VLST) for random numbers 
We have developed a new type of large tests to complement the available standard tests for 
analyzing the quality of random numbers in a mathematical sense and to verify their 
usefulness in Monte Carlo calculations. 

Considering that today we are able to run computationally intensive tasks on a modern HPC 
installation, possibly involving 16’000 cores for a day or even longer, it is quite obvious that 
we need to adapt our testing strategy to the dimension of these applications. For this 
reason, we have used a small HPC system (about 30 TFLOPS) exclusively for testing the AHS-
RNG, both deterministic and true random, and for testing commonly accepted PRNGs, such 
as the MT19937 and the XOshiro256**. The HPC system, named TRALLES in memory of 
Johann Georg Tralles (1763-1822), a German mathematician and geodesist, consists of 16 
Supermicro servers with a total of 1024 cores (AMD 7702P), a total of 8000 GB of RAM, and 
750 TB of Raid 5 disk capacity. 

1. Test U01 "BigCrush” 

The most comprehensive standard test for random numbers is currently the U01 test. In the 
large "Bigcrush" variant, 106 different statistical tests with 160 different calculations yield 
254 p-values as a result. The total number of bits used for the different tests is about 11'427 
billion bits. The computing time is about 2:30 to 4 hours. 

The first VLST is the test U01, not to neglect the classical mathematical statistics. We take 
the Bigcrush version of test U01, but we run this test not only once, but 10’000 tests with 
MT19937 and XOshiro256** and always 50’000 tests with AHS-RNG in deterministic mode, 
AHS-RNG true random mode with 50’000 times the same starting values and 50’000 times 
AHS-RNG true random with different starting parameters. We can provide the results of the 
p-values in an excel file or a bc file for further investigation. A detailed analysis of the results 
is planned for the near future.  

A first analysis of the results of MT19937, XOshiro256** and our AHS-RNG in both 
deterministic and non-deterministic modes confirmed the correctness of the AHS-RNG. As 
for the MT19937, we were not surprised to find the known inadequacy of the MT19937 with 
respect to the "linear correlation test" (p values nos. 177 and 179). All other tests are as 
expected, i.e., well distributed over the space 0 to 1. Working with bigcrush, we found 
minor deficiencies in the mathematical basis and minor errors in the programming. Upon 
request, we are happy to support an announced revision. 

2.  Birthday Paradox 

The second VLST is the birthday paradox. We do not use the 365-day version, but decided to 
use a "year" of 512 days. In this way, we consider all 9 bits from the output stream of the 
random number generators. By using the 9 bits continuously and without spaces, we get 
cyclic data from 9 different positions within the 64-bit random numbers.  



2 
 

For the 365-day version and 23 people in one room, there are 1255 different variants: from 
zero identical birthdays, once two identical birthdays, to 23 identical birthdays. For the 512-
day version and 27 people in a room, there are 3010 different variants. We run 5000 jobs 
with 1000 billion room fills, testing the random numbers for generating the different days. 
This gives a total of 5 × 1015 test cases, each consisting of generating 27 "birthdays" using 
the random number generator under test and finding the appropriate variant number from 
the 3010 possible. 
The first analysis is, of course, the number of different cases per variant that we encounter, 
both in the total number and in the 5000 subtotals per run. We know the exact expectation 
for each of the 3010 variants and can therefore compare the expectations with the detected 
cases and calculate the basic statistics.  
The second analysis is to compare the number of "at least two identical" cases per 100 
million cases, the results we obtained with the expected values. Since we have 10’000 
values of subtotals per run, we can statistically analyze a total of 50 million values.  
The third analysis consists in checking the days (0 to 511) that we encountered during the 
tests. We have available to us the subtotals from each run, i.e., 5000 records of 512 days. In 
total, we have 1.35 × 1017 random "day values" for our statistics. 
The fourth analysis consists of checking the distribution of "ones" and "zeros" using the 1.35 
× 1017 days. We get 9 results per day, so we can analyze a total of 1.215 × 1018 bits.  
A fifth analysis concerns Poisson statistics for five rare events. For the cases 1x4, 2x3, and 
2x2 identical (expectation of 38.6683... per 1000 billion) / 1x5 and 1x4 (43.9652...) / 1x6 and 
3x2 (36.3850...) / 1x7 (32.5476...) /1x7 and 1x2 (12.5615...) we store the type and cycle of 
occurrence so that we can check the result of the RNGs against some Poisson statistics.  
With this second VLST, we obtain results on the one-bit distribution, the 9-bit distribution, 
and the combinatorial correctness over the range of 243 bit strings. 

3.   1'000'032'000 keys with 256 bits, each compared with all the others 

With the third VLST we test the correctness of the RNGs when generating 256-bit keys, as 
they are often used in cryptography. If we generate more than 2256 keys, we must of course 
encounter identical keys. However, since this is not possible at the moment and probably 
never will be, we can rely on the binomial results of the differences between two 
independent 256-bit strings. As the number of comparisons increases, the spread of the 
expected number of differences also increases. 
For this test, we compare 1’000’032’000 keys, each with all the other 1’000’031’999. Since 
we do not need to compare B with A if we compared A with B, we get 
500’032’000’011’984’000 results. For this number of cases, the expected differences in the 
binomial distribution table start at the minimum of 60 bit differences (0.87 expected cases) 
and go up to 196 bit differences for the maximum of expected differences (0.87 expected 
cases), since the values are symmetrically distributed on either side of the highest 
expectation at 128 bit differences. Considering the very large number of comparisons, we 
do not store the individual results, but only calculate the total value per number of different 
bits. Since we perform the calculation in parallel on 990 cores, we also have the values of 
990 partial sums. 
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Using these results, we can analyze the relationship between the expected number of cases 
per number of differences and the number of cases counted, calculate the standard 
deviation, and other useful statistics.  

4. A Repetition Test for PRNGs and RNGs 

The fourth VLST is based on a test proposed by Gil, Gonnet and Petersen (A Repetition Test 
for Pseudo-Random Number Generators, Monte Carlo Methods and Appl. Math. Vol. 12, No 
5-6, pp. 385-393 / 2006). In this test, we generate 32-bit random numbers until we get an 
identical (the first repetition) to one of the previously generated (and stored) numbers from 
this cycle. But as an extension of the described test (run 100 cycles only three times and 
calculate the average), we run 100 billion cycles and store the number of results in run 
length per cycle. In practice, the run length of a cycle can vary from 2 to about 460’000. Per 
cycle, we store the run length of the cycle, the position of the first occurrence of the 
identical to the repetition, and the value of the random number that generates the first 
repetition. The number of the cycle is the position in the table. Since we have these details 
from all 100 billion cycles, we can produce many different statistics. The most important, of 
course, is to compare the number of cases at a given run length with the expected value and 
calculate the standard deviation.  
It was pure coincidence that we discovered a small problem with artifacts in the MT19937 
PRNG in this statistic, no need to worry because this artifact occurs on average only every 5 
billion cycles. 
Since we have to produce 100 billion times about 82'137 random numbers of 32 bits, i.e., 
about 8.2137 × 1015 32-bit numbers, we also perform a classification of these numbers. This 
allows us to compute statistics on the normal distribution of these numbers over the 
4'294'967'296 (232) distinct values. 
Appendix A explains that there is a possible case where the last number (the first repetition) 
of a case is identical to the first random number of the next case. To check for these very 
rare exceptions, we also store the occurrence of these exceptional cases (expected value of 
23.283... cases per 100 billion). 

5. Pairs or triplets of the new random number with the last 10000 generated  

The fifth test has its origin in the search for artifacts in PRNGs. Experience with this test has 
shown that it is useful for testing randomness in general. The basic idea is simple: we start 
by generating unsigned 32-bit random numbers and store them in a table with 10000 
elements.  
When the table is filled with 10’000 values, we continue with the normal mode. In the main 
program we now generate a new random number and test if this value is present in the last 
10’000 generated values. Be careful, the new generated value may appear several times in 
the table, exceptionally, but possible. After this test, we need to replace the oldest random 
number with the newest one to always have the last 10’000 generated random numbers in 
the table. Each time we found in the table a random number with the same value as the 
new one, we write this information in a binary file: Number of the cycle of the RNG, the 
value itself and the distance of the second value, the new number, from the first value in 
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the table. The number of the cycle indicates the n-th generated 32-bit random number. 
Considering the dimension of the table, the distance can vary between 1 and 10’000; 1 is 
the case in which the same value is generated twice without another one in between, and 
10’000 is the case in which the new random number forms a pair with the last one, the 
oldest number that is replaced in this cycle. 
In practice, we run on 1000 cores in parallel for 20’000 billion cycles each. In total, we 
collect the information about 2 * 1016 generated random numbers. The probability of 
finding a pair or a double by comparing the new value with the last 10’000 generated before 
is only one in 429’496.7296. This is easy to understand since the probability of forming a 
pair between two 32-bit random numbers is one in 232 . Since this possibility exists 10’000 
times in our case, the expected value is 10’000 times larger. Per job, the expectation is 
46’566’128.73.... pairs of 20’000 billion random numbers. So for the total of 1000 partial 
calculations, the expectation is 46’566’128’730 pairs. Given this large number, we decided 
to calculate the normal distribution of occurrence for each bit pattern, a total of 
4'294'967'296. 
The first interest is of course the matrix of two pairs in a row. We have defined a matrix of 
10’000 first pairs * 10’000 second pairs. This allows us to detect all anomalies related to two 
pairs in a row. This test confirmed our detection of the very rare artifacts in MT19937 (on 
average one artifact per 5 billion random numbers generated) and we obtained evidence 
that no artifacts exist in MT19937 other than these artifacts. Besides this analysis, there are 
other statistics to study, such as the geometric distribution of cases with identical numbers 
in the last 10’000, or the number of triples. 
 

6. "Measuring the random numbers" 

Last but not least, we come to our sixth VLST, the run-length test of identical random 
numbers, the masterpiece of the new RNG tests. This is computationally the most 
challenging test, as we perform "measuring the random numbers", random numbers 
expressed as 32-bit unsigned integers. First, we calculate the exact length of the distances 
between two identical 32-bit random numbers, and also some additional metrics. The 
length of the distance between identical random numbers is geometrically distributed, the 
distance can be up to, and even over 140 billion cycles, in the case of very large extensive 
test sets, or by rare extreme values in smaller test sets. We run 5000 billion cycles per core. 
Since we need about 120 GB of ram per job (the way we did the program), we can only run 
4 jobs per server. Running the test four times gives 1’280’000 billion cycles (4*16*4*5000 
billion). We separately record the length to the first occurrence of each of the 4’294’967’296 
distinct values, then the lengths between subsequent occurrences (including one 
occurrence), and the number of instances for each distinct random number pattern. At the 
end of the 5,000 billion cycles, we consider the first part of each case to be the end of the 
last unfinished string and include it in the global string length files. In this way, we get a total 
of 5'000 billion cases per job, for a total of 1'280'000 billion cycles. 
During this "ring closure" we came across an interesting "paradox". From the beginning to 
the first appearance of a certain pattern we have for the length an average of 232 cycles. 
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However, if we go back from the end (cycle number 5’000 billion), we also have an average 
of 232 cycles to the last occurrence of the particular pattern. Since still no repetition is 
contained, the exact expectation must be 232 - 1. In the first moment this fact looks strange, 
because the global average length must be only 232 . If we think about these different 
values, we must conclude that this fact is not related to the "ring closure", but must also 
occur in every cycle. To prove this fact and to get additional metrics, we inserted a 
"checkpoint" at each multiple of 1 billion; per job we get 5'000 checkpoints.  
At each checkpoint, we count the number of strings that arrive at the checkpoint and, with 
one exception, continue. This number must always be 4'294'967'296 strings. 
At each control point, we calculate the total length forward and backward (including the 
cycle in which the pattern appears) for all strings arriving at the control point.  
A separate metric is the number and average length of all strings that start after the -1 
checkpoint and end before the actual checkpoint, i.e., do not touch any checkpoint. We 
have calculated the expected number of these cases to be 107’882’641.039220241.... for 
the interval of 1 billion. The average expected length of these cases is 34’587’472.070454.... 
per case. 
 Separately, we get on one side the number of cases per distance, and on the other side the 
number how often each random number occurred. With the first information, we can now 
calculate, for example, how many cases we expect between 20’000’000 and 20’100’000, 
and give the result for the RNG on test.  
For the control, we calculate the numbers per distance multiplied by the distance, and the 
sum must be 1’280’000 billion × 2 .32 

Further tests we are considering for the future 

This is a first overview of our toolbox for testing RNGs. There are a few others that we plan 
to implement in the future. For 64-bit integers, we could do a large sort of 1000 billion 
values and see if the distances between values or identical values match expectations. Or 
we could calculate the run length of zeros and ones on a large scale like 10exp15 64-bit 
integers in a stream. We also want to perform NIST's tests for cryptographic security. 
 
Weidingen, on August 16th 2023 
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