
1

Very large scale tests (VLST) for random numbers
We have developed a new type of large tests to complement the available standard tests for
analyzing the quality of random numbers in a mathematical sense and to verify their
usefulness in Monte Carlo calculations.

Considering that today we are able to run computationally intensive tasks on a modern HPC
installation, possibly involving 16’000 cores for a day or even longer, it is quite obvious that
we need to adapt our testing strategy to the dimension of these applications. For this
reason, we have used a small HPC system (about 30 TFLOPS) exclusively for testing the AHS-
RNG, both deterministic and true random, and for testing commonly accepted PRNGs, such
as the MT19937 and the XOshiro256**. The HPC system, named TRALLES in memory of
Johann Georg Tralles (1763-1822), a German mathematician and geodesist, consists of 16
Supermicro servers with a total of 1024 cores (AMD 7702P), a total of 8000 GB of RAM, and
750 TB of Raid 5 disk capacity.

1. Test U01 "BigCrush”

The most comprehensive standard test for random numbers is currently the U01 test. In the
large "Bigcrush" variant, 106 different statistical tests with 160 different calculations yield
254 p-values as a result. The total number of bits used for the different tests is about 11'427
billion bits. The computing time is about 2:30 to 4 hours.

The first VLST is the test U01, not to neglect the classical mathematical statistics. We take
the Bigcrush version of test U01, but we run this test not only once, but 10’000 tests with
MT19937 and XOshiro256** and always 50’000 tests with AHS-RNG in deterministic mode,
AHS-RNG true random mode with 50’000 times the same starting values and 50’000 times
AHS-RNG true random with different starting parameters. We can provide the results of the
p-values in an excel file or a bc file for further investigation. A detailed analysis of the results
is planned for the near future.

A first analysis of the results of MT19937, XOshiro256** and our AHS-RNG in both
deterministic and non-deterministic modes confirmed the correctness of the AHS-RNG. As
for the MT19937, we were not surprised to find the known inadequacy of the MT19937 with
respect to the "linear correlation test" (p values nos. 177 and 179). All other tests are as
expected, i.e., well distributed over the space 0 to 1. Working with bigcrush, we found
minor deficiencies in the mathematical basis and minor errors in the programming. Upon
request, we are happy to support an announced revision.

2. Birthday Paradox

The second VLST is the birthday paradox. We do not use the 365-day version, but decided to
use a "year" of 512 days. In this way, we consider all 9 bits from the output stream of the
random number generators. By using the 9 bits continuously and without spaces, we get
cyclic data from 9 different positions within the 64-bit random numbers.

2

For the 365-day version and 23 people in one room, there are 1255 different variants: from
zero identical birthdays, once two identical birthdays, to 23 identical birthdays. For the 512-
day version and 27 people in a room, there are 3010 different variants. We run 5000 jobs
with 1000 billion room fills, testing the random numbers for generating the different days.
This gives a total of 5 × 1015 test cases, each consisting of generating 27 "birthdays" using
the random number generator under test and finding the appropriate variant number from
the 3010 possible.
The first analysis is, of course, the number of different cases per variant that we encounter,
both in the total number and in the 5000 subtotals per run. We know the exact expectation
for each of the 3010 variants and can therefore compare the expectations with the detected
cases and calculate the basic statistics.
The second analysis is to compare the number of "at least two identical" cases per 100
million cases, the results we obtained with the expected values. Since we have 10’000
values of subtotals per run, we can statistically analyze a total of 50 million values.
The third analysis consists in checking the days (0 to 511) that we encountered during the
tests. We have available to us the subtotals from each run, i.e., 5000 records of 512 days. In
total, we have 1.35 × 1017 random "day values" for our statistics.
The fourth analysis consists of checking the distribution of "ones" and "zeros" using the 1.35
× 1017 days. We get 9 results per day, so we can analyze a total of 1.215 × 1018 bits.
A fifth analysis concerns Poisson statistics for five rare events. For the cases 1x4, 2x3, and
2x2 identical (expectation of 38.6683... per 1000 billion) / 1x5 and 1x4 (43.9652...) / 1x6 and
3x2 (36.3850...) / 1x7 (32.5476...) /1x7 and 1x2 (12.5615...) we store the type and cycle of
occurrence so that we can check the result of the RNGs against some Poisson statistics.
With this second VLST, we obtain results on the one-bit distribution, the 9-bit distribution,
and the combinatorial correctness over the range of 243 bit strings.

3. 1'000'032'000 keys with 256 bits, each compared with all the others

With the third VLST we test the correctness of the RNGs when generating 256-bit keys, as
they are often used in cryptography. If we generate more than 2256 keys, we must of course
encounter identical keys. However, since this is not possible at the moment and probably
never will be, we can rely on the binomial results of the differences between two
independent 256-bit strings. As the number of comparisons increases, the spread of the
expected number of differences also increases.
For this test, we compare 1’000’032’000 keys, each with all the other 1’000’031’999. Since
we do not need to compare B with A if we compared A with B, we get
500’032’000’011’984’000 results. For this number of cases, the expected differences in the
binomial distribution table start at the minimum of 60 bit differences (0.87 expected cases)
and go up to 196 bit differences for the maximum of expected differences (0.87 expected
cases), since the values are symmetrically distributed on either side of the highest
expectation at 128 bit differences. Considering the very large number of comparisons, we
do not store the individual results, but only calculate the total value per number of different
bits. Since we perform the calculation in parallel on 990 cores, we also have the values of
990 partial sums.

3

Using these results, we can analyze the relationship between the expected number of cases
per number of differences and the number of cases counted, calculate the standard
deviation, and other useful statistics.

4. A Repetition Test for PRNGs and RNGs

The fourth VLST is based on a test proposed by Gil, Gonnet and Petersen (A Repetition Test
for Pseudo-Random Number Generators, Monte Carlo Methods and Appl. Math. Vol. 12, No
5-6, pp. 385-393 / 2006). In this test, we generate 32-bit random numbers until we get an
identical (the first repetition) to one of the previously generated (and stored) numbers from
this cycle. But as an extension of the described test (run 100 cycles only three times and
calculate the average), we run 100 billion cycles and store the number of results in run
length per cycle. In practice, the run length of a cycle can vary from 2 to about 460’000. Per
cycle, we store the run length of the cycle, the position of the first occurrence of the
identical to the repetition, and the value of the random number that generates the first
repetition. The number of the cycle is the position in the table. Since we have these details
from all 100 billion cycles, we can produce many different statistics. The most important, of
course, is to compare the number of cases at a given run length with the expected value and
calculate the standard deviation.
It was pure coincidence that we discovered a small problem with artifacts in the MT19937
PRNG in this statistic, no need to worry because this artifact occurs on average only every 5
billion cycles.
Since we have to produce 100 billion times about 82'137 random numbers of 32 bits, i.e.,
about 8.2137 × 1015 32-bit numbers, we also perform a classification of these numbers. This
allows us to compute statistics on the normal distribution of these numbers over the
4'294'967'296 (232) distinct values.
Appendix A explains that there is a possible case where the last number (the first repetition)
of a case is identical to the first random number of the next case. To check for these very
rare exceptions, we also store the occurrence of these exceptional cases (expected value of
23.283... cases per 100 billion).

5. Pairs or triplets of the new random number with the last 10000 generated

The fifth test has its origin in the search for artifacts in PRNGs. Experience with this test has
shown that it is useful for testing randomness in general. The basic idea is simple: we start
by generating unsigned 32-bit random numbers and store them in a table with 10000
elements.
When the table is filled with 10’000 values, we continue with the normal mode. In the main
program we now generate a new random number and test if this value is present in the last
10’000 generated values. Be careful, the new generated value may appear several times in
the table, exceptionally, but possible. After this test, we need to replace the oldest random
number with the newest one to always have the last 10’000 generated random numbers in
the table. Each time we found in the table a random number with the same value as the
new one, we write this information in a binary file: Number of the cycle of the RNG, the
value itself and the distance of the second value, the new number, from the first value in

4

the table. The number of the cycle indicates the n-th generated 32-bit random number.
Considering the dimension of the table, the distance can vary between 1 and 10’000; 1 is
the case in which the same value is generated twice without another one in between, and
10’000 is the case in which the new random number forms a pair with the last one, the
oldest number that is replaced in this cycle.
In practice, we run on 1000 cores in parallel for 20’000 billion cycles each. In total, we
collect the information about 2 * 1016 generated random numbers. The probability of
finding a pair or a double by comparing the new value with the last 10’000 generated before
is only one in 429’496.7296. This is easy to understand since the probability of forming a
pair between two 32-bit random numbers is one in 232 . Since this possibility exists 10’000
times in our case, the expected value is 10’000 times larger. Per job, the expectation is
46’566’128.73.... pairs of 20’000 billion random numbers. So for the total of 1000 partial
calculations, the expectation is 46’566’128’730 pairs. Given this large number, we decided
to calculate the normal distribution of occurrence for each bit pattern, a total of
4'294'967'296.
The first interest is of course the matrix of two pairs in a row. We have defined a matrix of
10’000 first pairs * 10’000 second pairs. This allows us to detect all anomalies related to two
pairs in a row. This test confirmed our detection of the very rare artifacts in MT19937 (on
average one artifact per 5 billion random numbers generated) and we obtained evidence
that no artifacts exist in MT19937 other than these artifacts. Besides this analysis, there are
other statistics to study, such as the geometric distribution of cases with identical numbers
in the last 10’000, or the number of triples.

6. "Measuring the random numbers"

Last but not least, we come to our sixth VLST, the run-length test of identical random
numbers, the masterpiece of the new RNG tests. This is computationally the most
challenging test, as we perform "measuring the random numbers", random numbers
expressed as 32-bit unsigned integers. First, we calculate the exact length of the distances
between two identical 32-bit random numbers, and also some additional metrics. The
length of the distance between identical random numbers is geometrically distributed, the
distance can be up to, and even over 140 billion cycles, in the case of very large extensive
test sets, or by rare extreme values in smaller test sets. We run 5000 billion cycles per core.
Since we need about 120 GB of ram per job (the way we did the program), we can only run
4 jobs per server. Running the test four times gives 1’280’000 billion cycles (4*16*4*5000
billion). We separately record the length to the first occurrence of each of the 4’294’967’296
distinct values, then the lengths between subsequent occurrences (including one
occurrence), and the number of instances for each distinct random number pattern. At the
end of the 5,000 billion cycles, we consider the first part of each case to be the end of the
last unfinished string and include it in the global string length files. In this way, we get a total
of 5'000 billion cases per job, for a total of 1'280'000 billion cycles.
During this "ring closure" we came across an interesting "paradox". From the beginning to
the first appearance of a certain pattern we have for the length an average of 232 cycles.

5

However, if we go back from the end (cycle number 5’000 billion), we also have an average
of 232 cycles to the last occurrence of the particular pattern. Since still no repetition is
contained, the exact expectation must be 232 - 1. In the first moment this fact looks strange,
because the global average length must be only 232 . If we think about these different
values, we must conclude that this fact is not related to the "ring closure", but must also
occur in every cycle. To prove this fact and to get additional metrics, we inserted a
"checkpoint" at each multiple of 1 billion; per job we get 5'000 checkpoints.
At each checkpoint, we count the number of strings that arrive at the checkpoint and, with
one exception, continue. This number must always be 4'294'967'296 strings.
At each control point, we calculate the total length forward and backward (including the
cycle in which the pattern appears) for all strings arriving at the control point.
A separate metric is the number and average length of all strings that start after the -1
checkpoint and end before the actual checkpoint, i.e., do not touch any checkpoint. We
have calculated the expected number of these cases to be 107’882’641.039220241.... for
the interval of 1 billion. The average expected length of these cases is 34’587’472.070454....
per case.
 Separately, we get on one side the number of cases per distance, and on the other side the
number how often each random number occurred. With the first information, we can now
calculate, for example, how many cases we expect between 20’000’000 and 20’100’000,
and give the result for the RNG on test.
For the control, we calculate the numbers per distance multiplied by the distance, and the
sum must be 1’280’000 billion × 2 .32

Further tests we are considering for the future

This is a first overview of our toolbox for testing RNGs. There are a few others that we plan
to implement in the future. For 64-bit integers, we could do a large sort of 1000 billion
values and see if the distances between values or identical values match expectations. Or
we could calculate the run length of zeros and ones on a large scale like 10exp15 64-bit
integers in a stream. We also want to perform NIST's tests for cryptographic security.

Weidingen, on August 16th 2023

Alain Schumacher / SICAP R&D / vers. 1.1

